

PSF Estimation & Atmospheric Effects

Aaron Roodman Kavli Institute for Particle Astrophysics & Cosmology SLAC National Accelerator Laboratory

Impact of the Last Kiloparsec
UC Davis
Dec. 14 2015

Primer on Fourier Optics

a Telescope:

converts Angle on the Sky to Position on the Focal Plane

Idealized Telescope

Angle & Position are Conjugate Variables

Fresnel Diffraction

$$I(x,y) = \left| \frac{1}{\lambda z} \int \left\{ \mathcal{P}(u,v) e^{i\frac{k}{2z}(u^2 + v^2)} \right\} e^{-i\frac{2\pi}{\lambda z}(xu + yv)} du dv \right|^2$$

Huygens Principle

Fraunhofer Diffraction

- far field
- spherically converging beam

$$I(x,y) = \left| \frac{1}{\lambda z} \int \mathcal{P}(u,v) e^{-i\frac{2\pi}{\lambda z}(xu+yv)} du dv \right|^2$$

note that this is a Fourier Transform

 $\mathcal{P}(u,v)$ is the Pupil Function

Circular pupil and perfectly converging beam gives the Airy pattern

Wavefront & Zernike expansion

Imperfect optical system?

$$I(x,y) = \left| \frac{1}{\lambda z} \int P(u,v) e^{i2\pi W(u,v)/\lambda} e^{-i\frac{2\pi}{\lambda z}(xu+yv)} du dv \right|^2$$

$$W(u,v) = \sum a_i Z_i(\rho,\theta)$$

Zernike expansion

Index	Name	Zernike Polynomial
2	Tilt X	$2\rho\cos\theta$
3	Tilt Y	$2\rho\sin\theta$
4	Focus	$\sqrt{3}(2\rho^2 - 1)$
5	Astigmatism Y	$\sqrt{6}\rho^2\sin 2\theta$
6	Astigmatism X	$\sqrt{6}\rho^2\cos 2\theta$
7	Coma Y	$\sqrt{8}(3\rho^3 - 2\rho)\sin\theta$
8	Coma X	$\sqrt{8}(3\rho^3 - 2\rho)\cos\theta$
9	Trefoil Y	$\sqrt{8}\rho^3\sin3\theta$
10	Trefoil X	$\sqrt{8}\rho^3\cos 3\theta$
11	Spherical	$\sqrt{5}(6\rho^4 - 6\rho^2 + 1)$

Gallery of Aberrations

simulated stars - in focus, with very good seeing

simulated stars - 1.5mm out of focus, with very good seeing

Gallery of Aberrations

simulated stars - in focus, with typical seeing

simulated stars - 1.5mm out of focus, with typical seeing

PSF Contributions

$$I(x,y) = \sum_{t_i} \left| \mathcal{F} \left\{ P(u,v) e^{i2\pi W_i(u,v)/\lambda} \right\} \right|^2 \otimes CCD(x,y|x',y')$$

$$W(u, v) = W_{\text{optics}(u, v)} + W_{\text{atmos.}(u, v)}$$

approximate as:

$$I(x,y) = \left| \mathcal{F} \left\{ P(u,v) e^{i2\pi W_{\text{optics}}(u,v)/\lambda} \right\} \right|^2 \otimes \text{Seeing} \otimes \text{CCD}$$

LSST FWHM Requirements:

0.25"

0.6"

0.3"

Sources of Ellipticity:

may be roughly equal parts optics & seeing

CCD Brighter-Fatter effect violates convolution

PSF Estimation from Optical Wavefronts

PSF usually measured in Stars and *interpolated* to location of Galaxies

instead Estimate PSF from knowledge of Optical system advantages:

- requires far fewer free parameters
- uses knowledge of system behavior
- potential to improve quality of PSF estimates

Wavefront PSF model:

- measure optical wavefront at all Focal Plane locations
- parametrize image to image changes in wavefront in terms of a few physically motivated parameters
- fit Star's FWHM and Ellipticity to Wavefront PSF model

work by Chris Davis

Optical Systems: DECam + Blanco compared to LSST

DECam + Blanco: Optical Degrees of Freedom

Mirror Figure: Zernike polynomial only Focus, Astigmatism, Coma, Trefoil, Spherical needed

all Focal Plane points sample Primary Mirror Figure: *prime focus*

DECam Alignment only affects: Focus, Astigmatism, Coma

$$W[x,y](\rho,\theta) = \sum_{i} a_i[x,y]Z_i(\rho,\theta)$$
$$a_i[x,y] = a_i(\text{Ref.})[x,y] + \Delta_i + \Theta_i^x * y + \Theta_i^y * x$$

LSST will be more complicated

DES Donut Fitting Algorithm

■ Model Wavefront at the pupil plane as a sum of Zernike terms

$$W(u,v) = \sum_{i=2}^{10} a_i Z_i(\rho,\theta)$$

Calculate Donut image via Fraunhofer Diffraction

$$PSF(x,y) \sim \left| \mathcal{F} \left\{ P(u,v) e^{i\frac{2\pi}{\lambda}W(u,v)} \right\} \right|^2$$

Convolute with smearing for Seeing, Pixelate.

$$I(x,y) \sim PSF \otimes Atmos \otimes Pixel$$

- \blacksquare Fit to find a_i
 - \blacksquare Non-linear χ^2 fit (MINUIT) to determine Zernike coefficients
 - Fit to 10 Zernike terms (or up to 15 Zernike Terms)
 - Fix or Float Seeing kernel
- Algorithm based on work of Fienup 1982,1993; Heathcote, Tokovinin 2006
- Fast algorithm, less than 2cpu sec/donut for 10 Zernike terms

DECam Wavefront Sensors

- 8 2K x 2K CCDs, placed ±1.5mm out-of-focus
- read-out along with Science CCDs

Reference Wavefront

Measure Reference Wavefront via out-of-focus stars

Reference Wavefront

Fit DES SV images to Wavefront PSF Model see Chris's poster for details

compare e0 Data, Model, and Data-Model

$$e0 = I_{xx} + I_{yy}$$

$$e1 = I_{xx} - I_{yy}$$

$$e2 = 2I_{xy}$$

$$w = \left[(I_{xx} - I_{yy})^2 + (2I_{xy})^2 \right]^{1/4}$$

prior to Hexapod under Active control

Compare Active Optics System vs. Wavefront PSF Model

AOS uses Wavefront CCDs (out of focus) to determine Focus & Hexapod alignment in real time

Wavefront PSF Model Results - more images

Wavefront PSF Model Results - more images

Wavefront PSF Model Results - more images

Atmospheric Contribution to Wavefront & PSF

Wavefront PSF Model:

- only includes optical Wavefront
- seeing included with a Kolmogorov kernel, assumed to be uniform over Focal Plane
- also include a uniform jitter contribution
- Seeing variations over the Focal Plane not included
- Interpret Residuals as due to Seeing
- Structure of Residuals is suggestive of Correlations in the Atmospheric Turbulence pattern

Literature on Wide-Field Seeing Correlations

- ◆ LSST simulations (C. Chang et al, 2012)
- ◆ CFHT data (C. Hymans etal, 2011)
 - ◆ 74sec exposure
 - high spatial order residuals, dense star fields

Wavefront Temporal Variations

- Sequence of 98 30-second i-band out-of-focus dithered images
- Donuts analyzed in usual way
- Combine Donuts from all images to form a Reference Wavefront
 - Each Zernike term adjusted by Δ , θx , θy in individual images to allow for Hexapod or Primary Mirror drifts
- Next plot the difference between the combined Wavefront and each image's Wavefront
- see the movies

$$\Delta a_i(\operatorname{Image}_j)[x,y] = a_i(\operatorname{Image}_j)[x,y] - a_i(\operatorname{Ref.})[x,y]$$

Changes in Focus Zernike

Changes in Astigmatism Y Zernike

Changes in Astigmatism X

Atmospheric Turbulence Correlations

- frozen flow of turbulent screen across pupil
 - separated points on Focal Plane view same turbulent screens

- Turbulent pattern is uncorrelated for H > D/ $\Delta\theta$
 - ground layer turbulence affects Pupil uniformly across F.O.V., and hence also all of Focal Plane
 - coherence present on angular scale of $\Delta\theta$ ~0.2°
 - corresponds to H>1100 meters

Future Study

Temporal Wavefront Variations

- ◆ DECam data with 10 and 90 second exposures
- scaling between DES and LSST:
 - variance of wavefront $(D/r_0)^{5/3}T$
- model corresponding PSF variations

Wavefront PSF Model

- ◆ DES Year 1 and 2 Data
- Study PSF residuals
- Develop PSF pipeline
 - deconvolve measured PSF and model PSF
 - use interpolation method for measured model